The NOvA Experiment

Martin Frank
University of Virginia
on behalf of the NOvA Collaboration

CIPANP 2012 June 1st, **2012**

PHYSICS

o NOvA:

- NuMI: Neutrinos at the Main Injector (v_u)
- Off-Axis: monoenergetic beam (2 GeV)
- ν_e Appearance

$$P(\nu_{\mu} \rightarrow \nu_{e}) = f(\theta_{13}, \theta_{23}, \delta_{\rm CP}, \text{mass hierarchy}, ...)$$

• Physics Goals:

- resolve θ_{23} octant
- measure CP-violating phase angle δ_{CP}
- resolve the neutrino mass hierarchy (normal vs. inverted)

NEUTRINO DETECTION

- We want to detect electron neutrinos (v_e):
 - This requires a large detector mass and good electromagnetic (EM) shower resolution.

- Solution: "Fully" Active Detector
 - use low Z materials: PVC extrusions filled with liquid scintillator
 - provides radiation length ~ 40 cm
 - o provides Molière radius ~ 11 cm
 - each extrusion contains one wavelength-shifting fiber
 - ends of fiber read out by avalanche photo-diode (APD)
 - detector optimized to differentiate EM showers from hadronic showers

Operation of the property o

- 32 PVC tubes \rightarrow 1 module
- 12 modules \rightarrow 1 (x- or y-) plane
- 32 planes \rightarrow 1 block

NuMl Beam Main Injector Fermilab

NUMI BEAMLINE

- NuMI: Neutrinos at the Main Injector
- Beam delivered to several neutrino experiments since 2005:
 - MINOS, MINERvA, and ArgoNeut
- Beam shutdown: May 2012 April 2013
 - upgrade beam:
 - o increase beam power from 300 kW to 700 kW
 - reduce cycle time from 2.2 s to 1.3 s
 - upgrade graphite target and magnetic focusing horns
 - near detector cavern excavation

NEAR DETECTOR(S) AT FERMILAB

- 105 m underground:
 - beam is aimed downward
 - using MINOS near detector shaft
 - construction will start after cavern excavation
 - $4 \text{ m} \times 4 \text{ m} \times 14 \text{ m}$
 - 266 tons = 639 modules = 20,448 channels
- on the surface:
 - prototype detector to test detector technology
 - completed May 9th, 2011
 - $3 \text{ m} \times 4 \text{ m} \times 14 \text{ m}$
 - 222 tons = 496 modules = 15,904 channels
 - successful running until beam shutdown last month

THE BEAM

- \circ Baseline (L = 810 km):
 - The neutrino beam travels from Fermilab (Batavia, IL) to Ash River, MN through the earth's crust.

- Energy ($E_v = 2 \text{ GeV}$):
 - The NuMI medium energy tune is shown on the left.
 - We can achieve a narrowly distributed neutrino energy by placing the far detector 14.6 mrad off the beam axis.

FAR DETECTOR

- 14+ kt detector:
 - $16 \text{ m} \times 16 \text{ m} \times 64 \text{ m}$
 - = 29 blocks
 - \bullet = 11,136 modules
 - = 356,352 channels
- building dedicated a month ago (April 2012)
- detector construction imminent

compared to Soldier Field

SIMULATED EVENT SIGNATURES

ν_{μ} charged-current

- ✓ long, well-defined muon track
- short proton track with large energy deposition at end

v_e charged-current

- ✓ single EM shower
- characteristic EM shower development

neutral-current with π^0 final state

- multiple displaced EM showers
- possible gaps near event vertex

EXTRACTING NATURE'S PARAMETERS

$$\frac{P(\nu_{\mu} \to \nu_{e})}{P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})} \approx \sin^{2}(2\theta_{13}) \sin^{2}(\theta_{23}) f^{\pm}(L, E, \Delta m_{31}^{2})$$

+
$$\{\cos \delta_{\mathrm{CP}} \cos \frac{\Delta m_{31}^2 L}{4E} + \sin \delta_{\mathrm{CP}} \sin \frac{\Delta m_{31}^2 L}{4E} \}$$

$$\times 2 \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \sin(\theta_{13}) g^{+}(L, E, \Delta m_{31}^2, \theta_{12}, \theta_{23})$$

- The NOvA baseline (L = 810 km) and neutrino beam energy (E = 2 GeV) place our detector at the first $v_{\mu} \rightarrow v_{e}$ oscillation peak.
- This allows us to extract the following terms by measuring the v_e appearance rate:
 - $\sin^2 2\theta_{13}$: the leading term in this equation has already been measured and it is large!
 - $\sin^2\theta_{23}$: we can gleam information about the θ_{23} octant from the leading term.
 - δ_{CP} : using the measured value of θ_{13} , we can determine the CP-violating phase angle.
 - mass hierarchy: depending on the sign of $\Delta m_{31}^2 \sim \Delta m_{32}^2$, the oscillation probability is either enhanced or suppressed. This difference can be determined by comparing neutrino running with anti-neutrino running.

IN LIGHT OF RECENT RESULTS ...

- \bullet θ_{13} has been measured and it is large!
- This is excellent news for us!
- Below is a combination of the most recent measurements.

NOVA PHYSICS REACH

- We will measure the appearance probability of electron neutrinos and antineutrinos (the two axes).
- o The plotted points give the calculated values for different values of δ_{CP} and for the normal and inverted mass hierarchies.
- o The large value of θ_{13} (8.8°) gives us better separation between the normal and inverted mass hierarchy.

NOVA PHYSICS REACH

1 and 2 σ Contours for Starred Point

- Assume that we would measure the starred point at the extremity of the ellipse.
- The bold and dotted lines show the 1 and 2 σ contours that we could achieve with:
 - 3 years neutrino running
 - 3 years anti-neutrino running

CAN WE RESOLVE THE MASS HIERARCHY?

6/1/12 Martin Frank
University of Virginia

EXOTIC SEARCHES

• We have a massive detector, so we do not have to look exclusively at the NuMI beam.

• Monopoles:

- highly ionizing, slow moving particles
- the plot on the right shows the flux sensitivity for straight lines going through a NOvA-like detector

Supernova

- entire detector gets flushed with cosmic neutrino events
- WIMP (Weakly Interacting Massive Particle)
 - highly energetic neutrinos coming from the sun

SUMMARY

- Far Detector construction will begin within the next few months and we expect to turn our first blocks on this fall.
- We are excited to start investigating neutrinos from the NuMI beam and pin down δ_{CP} , the mass hierarchy and the θ_{23} octant.
- We will use our detector as an eye to the universe and are excited about what we might learn.
- We do not only have a massive detector, but also a massive

collaboration of dedicated people!

150+ scientists and engineers from 25 institutions from 5 countries

BACK-UP SLIDES

EXTRACTING NATURE'S PARAMETERS

- The NOvA baseline (810 km) and neutrino beam energy (2 GeV) place our detector at the first $v_{\mu} \rightarrow v_{e}$ oscillation peak.
- This allows us to extract the following terms by measuring the v_e appearance rate:
 - $\sin^2 2\theta_{13}$: the leading term in this equation has already been measured and it is large!
 - δ_{CP} : using the measured value of θ_{13} , we can determine the CP-violating phase angle.
 - $\sin^2\theta_{23}$: we can gleam information about the θ_{23} octant from the leading term.
 - mass hierarchy: depending on the sign of $\Delta m_{31}^2 \sim \Delta m_{32}^2$, the oscillation probability is either enhanced or suppressed. This difference can be determined by comparing neutrino running with anti-neutrino running.

EXTRACTING NATURE'S PARAMETERS

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \approx \sin^{2}(2\theta_{13}) \sin^{2}(\theta_{23}) f^{-}(L, E, \Delta m_{31}^{2})$$

+
$$\{ \cos \delta_{\text{CP}} \cos \frac{\Delta m_{31}^2 L}{4E} + \sin \delta_{\text{CP}} \sin \frac{\Delta m_{31}^2 L}{4E} \}$$

$$\times 2\frac{\Delta m_{21}^2}{\Delta m_{31}^2}\sin(\theta_{13})g^-(L,E,\Delta m_{31}^2,\theta_{12},\theta_{23})$$

- The NOvA baseline (L = 810 km) and neutrino beam energy (E = 2 GeV) place our detector at the first $v_u \rightarrow v_e$ oscillation peak.
- This allows us to extract the following terms by measuring the v_e appearance rate:
 - $\sin^2 2\theta_{13}$: the leading term in this equation has already been measured and it is large!
 - $\sin^2\theta_{23}$: we can gleam information about the θ_{23} octant from the leading term.
 - δ_{CP} : using the measured value of θ_{13} , we can determine the CP-violating phase angle.
 - mass hierarchy: depending on the sign of $\Delta m_{31}^2 \sim \Delta m_{32}^2$, the oscillation probability is either enhanced or suppressed. This difference can be determined by comparing neutrino running with anti-neutrino running.

NuMI: Neutrinos at the Main Injector (v_u)

Off-Axis: monoenergetic beam (2 GeV)

v_e Appearance

The NOvA Experiment

Martin Frank
University of Virginia
on behalf of the NOvA Collaboration

CIPANP 2012 June 1st, 2012

